જો ${\left( {1 + x} \right)^{10}} = \sum\limits_{r = 0}^{10} {{C_r}{x^r}} $ ,${\left( {1 + x} \right)^7} = \sum\limits_{r = 0}^7 {{d_r}{x^r}} $ અને $P = \sum\limits_{r = 0}^5 {{C_{2r}}} $ તથા $Q = \sum\limits_{r = 0}^3 {{d_{2r + 1}}} $ ,હોય તો $\frac{P}{{2Q}}$ ની કિમત મેળવો
$2$
$4$
$8$
$16$
જો $(1 + x)^m = C_0 + C_1x + C_2x^2 + C_3x^3 + . . . . . +C_mx^m$, જ્યાં $C_r ={}^m{C_r}$ અને $A = C_1C_3 + C_2C_4+ C_3C_5 + C_4C_6 + . . . . . .. + C_{m-2}C_m$, હોય તો નીચેનામાંથી ક્યુ ખોટું છે ?
If $\sum\limits_{ k =1}^{31}\left({ }^{31} C _{ k }\right)\left({ }^{31} C _{ k -1}\right)-\sum\limits_{ k =1}^{30}\left({ }^{30} C _{ k }\right)\left({ }^{30} C _{ k -1}\right)=\frac{\alpha(60 !)}{(30 !)(31 !)}$ જ્યાં $\alpha \in R$, હોય, તો $16 \alpha$ નું મૂલ્ય...........છે
જો $\frac{{ }^{11} C_1}{2}+\frac{{ }^{11} C_2}{3}+\ldots . .+\frac{{ }^{11} C_9}{10}=\frac{n}{m}$ જ્યાં ગુ. સા. અ. $\operatorname(n, m)=1$,હોય,તો $n+m$ .....................
$(x - 1)^2(x - 2)^3(x - 3)^4(x - 4)^5 .... (x - 10)^{11}$ ના વિસ્તરણમાં $x^{64}$ નો સહગુણક મેળવો
જો ${(\alpha {x^2} - 2x + 1)^{35}}$ ના વિસ્તરણમાં સહગુણકોનો સરવાળોએ ${(x - \alpha y)^{35}}$ ના વિસ્તરણમાં સહગુણકોનો સરવાળો બરાબર થાય છે , તો $\alpha $=